Modeling Helical Structures in Relativistic Jets
نویسنده
چکیده
Many jets exhibit twisted helical structures. Where superluminal motions are detected, jet orientation and pattern/flow speed are considerably constrained. In this case modeling efforts can place strong limits on conditions in the jet and in the external environment. This can be done by modeling the spatial development of helical structures which are sensitively dependent on these conditions. Along an expanding jet this sensitivity manifests itself in predictable changes in pattern speed and observed wavelength. In general, twists of low frequency relative to the local resonant frequency are advected along the expanding jet into a region in which the twist frequency is high relative to the local resonant frequency. The wave speed can be very different in these two frequency regimes. Potential effects include helical twists with a nearly constant apparent wavelength, an apparent wavelength scaling approximately with the jet radius for up to two orders of magnitude of jet expansion, or multiple twist wavelengths with vastly different intrinsic scale and vastly different wave speeds that give rise to similar observed twist wavelengths but with very different observed motion. In this paper I illustrate the basic intrinsic and observed behavior of these structures and show how to place constraints on jet conditions in superluminal jets using the apparent structures and motions in the inner 3C 120 jet. Subject headings: galaxies: jets — hydrodynamics — relativity — galaxies: active — galaxies: individual (3C 120)
منابع مشابه
Signatures of helical jets
Observational signatures of helical jets can be found in some X-ray binaries (XRB), planetary nebulae, Herbig-Haro objects and in jets of active galactic nuclei (AGN). For the prototypical XRB SS433 a kinematic model of precessing jets has been applied very successfully and yielded a determination of its distance which is independent of conventional methods. In galactic jets precession appears ...
متن کاملThe Effect of External Winds on Relativistic Jets
Relativistic jets in Galactic superluminals and extragalactic AGN may be surrounded by a wind near to the central engine. Theoretical analysis and numerical simulation reveal considerable stabilization of relativistic jet flow by a wind to helical and higher order asymmetric modes of jet distortion. When velocities are measured in the source (inlet) frame, reduction in the absolute velocity dif...
متن کاملMicroscopic Processes in Global Relativistic Jets Containing Helical Magnetic Fields
In the study of relativistic jets one of the key open questions is their interaction with the environment on the microscopic level. Here, we study the initial evolution of both electron−proton (e− − p+) and electron−positron (e±) relativistic jets containing helical magnetic fields, focusing on their interaction with an ambient plasma. We have performed simulations of "global" jets containing h...
متن کاملRecollimation Shocks in Magnetized Relativistic Jets
We have performed two-dimensional special-relativistic magnetohydrodynamic simulations of nonequilibrium over-pressured relativistic jets in cylindrical geometry. Multiple stationary recollimation shock and rarefaction structures are produced along the jet by the nonlinear interaction of shocks and rarefaction waves excited at the interface between the jet and the surrounding ambient medium. Al...
متن کاملPoynting Flux Dominated Jets in Decreasing Density Atmospheres. I. The Non-relativistic Current-driven Kink Instability and the Formation of “Wiggled” Structures
Non-relativistic three-dimensional magnetohydrodynamical (MHD) simulations of Poynting flux dominated (PFD) jets are presented. Our study focuses on the propagation of strongly magnetized hypersonic, but sub-Alfvénic (C2 s ≪ V 2 jet < V 2 A) flow and on the subsequent development of a current-driven (CD) kink instability. This instability may be responsible for the “wiggled” structures seen in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003